Iodo(η^{5}-methylcyclopentadienyl)nitrosyl(thiocarbonyl)manganese(II)

By J. A. Potenza, R. Johnson and S. Rudich
Department of Chemistry, Rutgers University, New Brunswick, New Jersey 08903, USA
and A. Efraty
Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel

(Received 1 February 1980; accepted 12 March 1980)

Abstract

Mn}\left(\mathrm{C}_{6} \mathrm{H}_{7}\right)(\mathrm{CS}) \mathrm{I}(\mathrm{NO})\right]\), monoclinic, $P 2_{1} / a$, $a=12.811$ (9), $b=8.078$ (8), $c=12.435$ (18) $\AA, \beta=$ $126.90(3)^{\circ}, Z=4, D_{o}=2.20(1), D_{c}=2 \cdot 17 \mathrm{Mg} \mathrm{m}^{-3}$. The structure was refined to an R_{F} value of 0.038 ($R_{w F}=0.036$). It contains discrete ($\eta^{5}-\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4}$) Mn(CS)(NO)I units with Mn coordinated to the ligands $\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4}, \mathrm{CS}$, NO, and I; the three unidentate ligands and the center of the cyclopentadienyl ring surround the Mn atom in a distorted tetrahedral arrangement. The $\mathrm{Mn}-\mathrm{I}$ distance $[2.645$ (2) \AA] is $0.166 \AA$ shorter than that found for the square-pyramidal $\mathrm{Mn}^{\text {II }}$ cation $\left[\mathrm{MnI}\left(\mathrm{OPPh}_{3}\right)_{4}\right]^{+}$. The $\mathrm{Mn}-\mathrm{C}(\mathbf{S})$ distance $[1.803$ (6) \AA] is substantially longer than the $\mathrm{Mn}-\mathrm{N}(\mathrm{O})$ distance $[1.647(6) \AA]$ and is approximately equal to the $\mathrm{Mn}-\mathrm{C}(\mathrm{O})$ distances reported for similar Mn complexes, suggesting that, for complexes of this type, $\mathrm{Mn}-\mathrm{C}(\mathrm{S}) \simeq$ $\mathrm{Mn}-\mathrm{C}(\mathrm{O})>\mathrm{Mn}-\mathrm{N}(\mathrm{O})$.

Introduction. The present structural investigation was undertaken as part of a project designed to prepare and characterize novel mononuclear (cyclopentadienyl)(thiocarbonyl)manganese complexes (Efraty, Arneri \& Ruda, 1977). The title complex was prepared from $\left[\left(\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Mn}(\mathrm{CS})(\mathrm{CO}) \mathrm{NO}^{+} . \mathrm{PF}_{6}^{-}\right.$as described previously (Efraty et al., 1977), and suitable crystals were obtained at 195 K from pentane. A black plate of dimensions $0.10 \times 0.17 \times 0.36 \mathrm{~mm}$, mounted in a sealed glass capillary under N_{2}, was used. Weissenberg and precession photographs indicated a monoclinic lattice and showed systematic absences consistent with space group $B 2_{1} / c$ ($h k l, h+l=2 n+1$; $h 0 l, l=2 n+1 ; 0 k 0, k=2 n+1)$. Data were collected and cell dimensions measured using the B-centered lattice and an Enraf-Nonius CAD-3 automated diffractometer. The cell dimensions and data were then converted to the primitive space group $P 2_{1} / a$. With $Z=4$ in space group $P 2_{1} / a$, the observed (flotation) and calculated densities agreed well.

Data were collected ($\theta-2 \theta$ scan, $4<2 \theta<55^{\circ}$) at $295 \pm 2 \mathrm{~K}$ using graphite-monochromated Mo K α radiation ($\lambda=0.71069 \AA$). A total of 1411 reflections
having $F^{2} \geq 3 \sigma\left(F^{2}\right)$ were considered observed, corrected for Lp effects and used for the structure solution and refinement. Standard deviations were assigned as $\sigma\left(F^{2}\right)=(\mathrm{Lp})^{-1}\left[N_{t}+\left(0.03 N_{n}\right)^{2}\right]^{1 / 2}$, where N_{t} is the total count and N_{n} is the net count. Absorption corrections were not applied ($\mu=0.38 \mathrm{~mm}^{-1}$ for Mo Ka radiation).

The structure was solved by the heavy-atom method and refined by full-matrix least-squares techniques. Refinement was accomplished using the program FLINUS obtained from Brookhaven National Laboratory; the remaining programs have been described previously (Fawcett, Ou, Potenza \& Schugar, 1978). Neutral-atom scattering factors and anomalous-dispersion corrections for I, Mn and S were obtained from International Tables for X-ray Crystallography (1974). Approximate coordinates for the 1, Mn , and S atoms were determined from a normalsharpened Patterson map. The remaining non-hydro-

Table 1. Fractional atomic coordinates

Estimated standard deviations are given in parentheses.

	x	y	z
	x	y	
I	$0.50245(4)$	$0.71008(6)$	$0.20531(4)$
Mn	$0.63159(8)$	$0.4270(1)$	$0.29582(8)$
S	$0.3789(2)$	$0.2119(3)$	$0.0490(2)$
O	$0.5833(5)$	$0.3685(6)$	$0.4868(5)$
N	$0.6007(5)$	$0.3969(6)$	$0.4052(5)$
$\mathrm{C}(1)$	$0.7500(5)$	$0.2695(8)$	$0.2684(6)$
$\mathrm{C}(2)$	$0.8154(6)$	$0.3020(9)$	$0.4066(7)$
$\mathrm{C}(3)$	$0.8389(6)$	$0.4772(9)$	$0.4278(7)$
$\mathrm{C}(4)$	$0.7889(6)$	$0.5492(8)$	$0.3043(7)$
$\mathrm{C}(5)$	$0.7316(6)$	$0.4245(9)$	$0.2061(6)$
$\mathrm{C}(6)$	$0.7190(6)$	$0.1024(8)$	$0.2048(7)$
$\mathrm{C}(7)$	$0.4919(6)$	$0.3156(7)$	$0.1590(6)$
$\mathrm{H}[\mathrm{C}(2)]$	0.844	0.223	0.475
$\mathrm{H}[\mathrm{C}(3)]$	0.882	0.534	0.512
$\mathrm{H}[\mathrm{C}(4)]$	0.791	0.665	0.291
$\mathrm{H}[\mathrm{C}(5)]$	0.692	0.442	0.114
$\mathrm{H}[\mathrm{C}(6) 1]$	0.672	0.033	0.233
$\mathrm{H}[\mathrm{C}(6) 2]$	0.658	0.121	0.099
$\mathrm{H}[\mathrm{C}(6) 3]$	0.808	0.049	0.234

Fig. 1. View of the title complex showing the atom numbering scheme and bond distances (\AA) and angles $\left({ }^{\circ}\right)$. Additional distances and angles are: $\mathrm{Mn}-\mathrm{C}(1), 2 \cdot 158$ (6); $\mathrm{Mn}-\mathrm{C}(2)$, $2 \cdot 137$ (6); $\quad \mathrm{Mn}-\mathrm{C}(3), \quad 2 \cdot 163$ (6); $\quad \mathrm{Mn}-\mathrm{C}(4), \quad 2 \cdot 189$ (6); $\mathrm{Mn}-\mathrm{C}(5), \quad 2.146(6) ; \quad \mathrm{Mn}-\mathrm{CG}, \quad 1.794 \AA$ Á; $\mathrm{I}-\mathrm{Mn}-\mathrm{C}(7)$, $91.0(2)^{\circ}$. CG is the center of gravity of the cyclopentadienyl ring.
gen atoms were located on an electron density map prepared using phases derived from the I, Mn, and S coordinates.

Refinement was based on F with weights derived from standard deviations estimated from counting statistics. Following isotropic refinement of the C, N and O atoms, and anisotropic refinement of the I, Mn and S atoms, H -atom coordinates were calculated using methods described previously (Fawcett et al., 1978) and confirmed with electron density maps. Isotropic thermal parameters for all H atoms were set according to $B_{\mathrm{H}}=B_{N}+1$ where B_{N} is the temperature factor of the atom bonded to H . H parameters were not refined. Several cycles of anisotropic refinement of all nonhydrogen atoms led to convergence with $R_{F}=$ $\sum\left|\left|F_{o}\right|-\left|F_{c}\right| / \sum\right| F_{o} \mid=0.038$ and $R_{w F}=$ $\left[\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \sum w\left|F_{o}\right|^{2}\right]^{1 / 2}=0.036$. For the final cycle, all parameter changes were less than 0.05σ, where σ is the e.s.d. obtained from the inverse matrix. A final difference map showed a general background of $\pm 0.4 \mathrm{e} \AA^{-3}$ and revealed no significant features. Atom parameters* are given in Table 1, while a view of the structure, showing the atom numbering scheme as well as bond distances and angles, is given in Fig. 1.

[^0]Discussion. The structure consists of discrete units of the title complex with each Mn atom coordinated to one I, NO, CS and $\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4}$ ligand. The coordination geometry is typical of $\mathrm{Cp} M L_{3}$ complexes where $\mathrm{Cp}=$ cyclopentadienyl and L is a unidentate ligand and may be described as distorted tetrahedral, ψ-octahedral (Messer, Landgraf \& Behrens, 1979) or ' 5 and 3 eightfold coordination' depending upon whether the methylcyclopentadienyl ligand is assumed to occupy one, three, or five coordination sites, respectively.

As indicated by the $\mathrm{Mn}-\mathrm{C}$ distances, the Cp group is very nearly symmetrically bound to Mn . The average $\mathrm{Mn}-\mathrm{C}$ (ring) distance $[2.159(20) \AA]$ lies within experimental error of those reported for (η^{5} $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mn}(\mathrm{CO})_{3}[2.151(21) \AA$, Berndt \& Marsh, 1963] and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mn}(\mathrm{CO})(\mathrm{NO})\left(\mathrm{CONH}_{2}\right)[2 \cdot 144(10) \AA$, Messer et al., 1979] and is significantly longer than that reported for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mn}(\mathrm{CO})_{2} \mathrm{SO}_{2}[2.09$ (2) \AA, Barbeau \& Dubey, 1973]. Bonding parameters of the Cp ring are typical. All five ring C atoms are planar to within $\pm 0.01 \AA$ while the mean $\mathrm{C}-\mathrm{C}$ distance [1.411 (18) \AA] and $C-C-C$ angle [$108(1)^{\circ}$] lie within experimental error of those reported for the Mn complexes cited above. The C(methyl) carbon atom is exo to $\mathrm{Mn}, 0.16 \AA$ from the least-squares plane of the Cpring.

Bonding parameters of the nitrosyl group $[\mathrm{Mn}-\mathrm{N}(\mathrm{O}), 1.647$ (6); $\mathrm{N}-\mathrm{O}, 1 \cdot 185$ (6) $\AA \dot{\mathrm{A}} ; \mathrm{Mn}-\mathrm{N}-\mathrm{O}$, $176.5(5)^{\circ}$] closely resemble those reported for 5-exo- $\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Mn}(\mathrm{CO})(\mathrm{NO}) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \quad[1.674$ (5); 1.200 (7) $\AA ; 178.4$ (5) ${ }^{\circ}$; Evrard, Thomas, Davis \& Bernal, 1976] and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mn}(\mathrm{CO})(\mathrm{NO})\left(\mathrm{CONH}_{2}\right)$ [1.651 (4); 1.187 (7) $\left.\AA ; 179.1(4)^{\circ}\right]$. In each of these structures, the $\mathrm{Mn}-\mathrm{N}-\mathrm{O}$ group is nearly linear, in contrast to $\mathrm{Mn}(\mathrm{NO})_{2}\left[\mathrm{P}(\mathrm{OMe})_{2} \mathrm{Ph}\right]_{2} \mathrm{Cl}$ where it was found to be bent $\left[\mathrm{Mn}-\mathrm{N}-\mathrm{O}, 165(1)^{\circ}\right.$; Laing, Reimann \& Singleton, 1974]. The near linearity of the $\mathrm{Mn}-\mathrm{N}-\mathrm{O}$ groups in these structures is in disagreement with the prediction of Laing et al. (1974) that $\mathrm{Mn}-\mathrm{N}-\mathrm{O}$ groups would be bent substantially. The Mn-I distance $[2.645$ (2) \AA], while close to the value usually found for second- and third-row transition elements $(\sim 2.7 \AA)$, is $0.166 \AA$ shorter than that reported for the square-pyramidal $\mathrm{Mn}^{\mathrm{II}}$ cation $\mathrm{MnI}\left(\mathrm{OPPh}_{3}\right)_{4}^{+}[2.811$ (8) Å, Ciani, Manassero \& Sansoni, 1972].

The present structure permits a direct comparison of the structural parameters for Mn-coordinated thiocarbonyl and nitrosyl ligands, and an indirect comparison with carbonyl ligands. The $\mathrm{Mn}-\mathrm{C}(\mathrm{S})$ distance $[1.803$ (6) $\AA]$ is approximately equal to the values of 1.795 (5) and 1.771 (7) \AA reported for the $\mathrm{Mn}-\mathrm{C}(\mathrm{O})$ bonds in the structurally similar complexes $\left(\eta^{5}-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mn}(\mathrm{CO})(\mathrm{NO})\left(\mathrm{CONH}_{2}\right)$ and $5-$ exo $-\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4}-$ $\mathrm{Mn}(\mathrm{CO})(\mathrm{NO}) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$, respectively. The $\mathrm{Mn}-\mathrm{N}(\mathrm{O})$ distances in these three complexes are nearly equal [1.647 (6), 1.651 (4) and 1.674 (5) \AA, respectively]
and are $0.10-0.16 \AA$ shorter than the $\mathrm{Mn}-\mathrm{C}(\mathrm{S})$ or $\mathrm{Mn}-\mathrm{C}(\mathrm{O})$ distances given above, suggesting that, for complexes of this type, $\mathrm{Mn}-\mathrm{C}(\mathrm{S}) \simeq \mathrm{MnC}(\mathrm{O})>$ $\mathrm{Mn}-\mathrm{N}(\mathrm{O})$.

We thank the Center for Computer and Information Services, Rutgers University, for providing computer time.

References

Barbeau, C. \& Dubey, R. J. (1973). Can. J. Chem. 51, 3684-3689.
Berndt, A. F. \& Marsh, R. E. (1963). Acta Cryst. 16, 118-123.

Ciani, G., Manassero, M. \& Sansoni, M. (1972). J. Inorg. Nucl. Chem. 34, 1760-1762.
Efraty, A., Arneri, R. \& Ruda, W. A. (1977). Inorg. Chem. 16, 3124-3127.
Evrard, G., Thomas, R., Davis, B. R. \& Bernal, I. (1976). Inorg. Chem. 15, 52-57.

Fawcett, t. G., Ou, C.-C., Potenza, J. A. \& Schugar, H. J. (1978). J. Am. Chem. Soc. 100, 2058-2062.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
laing, M., Reimann, R. \& Singleton, E. (1974). Inorg. Nucl. Chem. Lett. 10, 557-560.
Messer, D., Landgraf, G. \& Behrens, H. (1979). J. Organomet. Chem. 172, 349-358.

Acta Cryst. (1980). B36, 1935-1937

Strontium Bis[tris(monochloroacetato)stannate(II)]

By John C. Dewan
Department of Chemistry, Columbia University, New York, New York 10027, USA

(Received 22 January 1980; accepted 21 March 1980)

Abstract

Sr}\left[\mathrm{Sn}\left(\mathrm{CH}_{2} \mathrm{ClCO}_{2}\right)_{3}\right]_{2}, \quad \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{Cl}_{6} \mathrm{O}_{12} \mathrm{Sn}_{2} \mathrm{Sr}\), triclinic, $P \overline{1}, a=10.283(1), b=14.878$ (1), $c=$ 9.710 (1) $\AA, \alpha=100.196$ (8), $\beta=115.663$ (8), $\gamma=$ $99.234(7)^{\circ}, M_{r}=885.94, V=1269.9 \AA^{3}, Z=2$, $D_{m}=2.313$ (flotation, $\mathrm{CHBr}_{3} / \mathrm{CHCl}_{3}$), $D_{c}=2.317 \mathrm{Mg}$ $\mathrm{m}^{-3}, F(000)=840$. Each asymmetric unit consists of one Sr^{2+} cation and two $\left[\mathrm{Sn}\left(\mathrm{CH}_{2} \mathrm{ClCO}_{2}\right)_{3}\right]$ - complex anions. Both trigonal-pyramidal Sn^{11} atoms are coordinated by three O atoms from three different unidentate chloroacetate ligands. The second O atom of each chloroacetate ligand, not bound to Sn , is involved in one contact to a Sr^{2+} cation, giving distorted octahedral coordination to Sr where the $\mathrm{Sr}-\mathrm{O}$ distances range from 2.498 (7) to 2.611 (5) \AA. The final R was 0.037 .

Introduction. The number of crystal structures of $\mathrm{Sn}^{\mathrm{II}}$ carboxylate compounds that are now known has grown considerably and among these are included $\mathrm{K}\left[\mathrm{Sn}\left(\mathrm{HCO}_{2}\right)_{3}\right]$ (Jelen \& Lindqvist, 1969), $\mathrm{Ca}\left[\mathrm{Sn}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{3} \mathrm{I}_{2}\right.$ (Dewan, Silver, Donaldson \& Thomas, 1977), $\mathrm{K}\left[\mathrm{Sn}_{\left.\left(\mathrm{CH}_{2} \mathrm{ClCO}_{2}\right)_{3}\right]}\right.$ (Clark, Donaldson, Dewan \& Silver, 1979), $\mathrm{Na}_{2}\left[\mathrm{Sn}_{\left.\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]}\right.$ (Donaldson, Donoghue \& Smith, 1976), $\mathrm{Sn}\left(\mathrm{O}_{2} \mathrm{CCHCHCO}_{2}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ (Dewan, Silver, Andrews, Donaldson \& Laughlin, 1977), $\mathrm{K}_{2}\left[\mathrm{Sn}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (Dewan, Silver, Henrick \& Donaldson, 1976; Christie, Howie \& Moser, 1979), and $\operatorname{Sn}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)$ (Christie, Howie \& Moser, 1979). Detailed reviews, concerned 0567-7408/80/081935-03\$01.00
entirely or in part with the structure and chemistry of $\mathrm{Sn}^{\mathrm{II}}$, are available (Donaldson, 1967; Harrison, 1976), the most recent and comprehensive of which is that by Zubieta \& Zuckerman (1978). Donaldson \& Jelen (1968a) have previously described the preparation of the title compound, and its structure is reported here.

The colourless crystal used in the diffraction study was bounded by ten faces: ($11 \overline{1}$) and ($\overline{1} \overline{1} 1), 0.134 \mathrm{~mm}$ apart; ($01 \overline{1}$) and ($0 \overline{1} 1$), 0.166 mm apart; and the three pairs (101), ($\overline{1} 01$) and (210), ($2 \overline{1} 0$) and (010), (010), each 0.20 mm apart. The quality of the data crystal was examined on the diffractometer, by taking ω scans of several strong low-angle reflections, and judged to be acceptable. The average width of the peaks at halfheight was 0.13°. Intensity data, in the range $3 \leq 2 \theta \leq$ 55°, were collected at 298 K with the $\omega-2 \theta$ scan technique on an Enraf-Nonius CAD-4F κ-geometry diffractometer with graphite-monochromated Mo Ka radiation ($\lambda \alpha_{2}=0.70926 \AA$). Scan rates were automatically selected to make $I / \sigma(I)=100$, and varied from 1 to $20^{\circ} \min ^{-1}$ in ω, with a maximum scan time of 50 s . Prescans were made at $20^{\circ} \min ^{-1}$ and reflections having $I / \sigma(I)<1$ were considered weak and were not remeasured. Scan ranges were computed according to $\Delta \omega=(0.6+0.35 \tan \theta)^{\circ}$ and were extended 25% on either side for the measurement of backgrounds. Three standard reflections, $3 \overline{6} 4,60 \overline{3}$, and $04 \overline{6}$, measured after each 3600 s of X-ray exposure time (approximately after each 90 reflections), were

[^0]: * Lists of structure factors and thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35210 (9 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

